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1 Motivation and Overview

In our previous lectures, we’ve analyzed the abelian extensions of QQ in terms of the ideal
group. Now we want to study extensions of imaginary quadratic fields K = Q(v/—D),
and we will do this in terms of the arithmetic data of K. Since ideals of K are naturally
lattices in C, it is natural to study lattices and their own properties. In this lecture, we
study lattices in C, and study functions which are invariant under lattices. We study
these elliptic functions explicitly, proving many great theorems about them. Then we
give a few examples and show that we’ve generated all such elliptic functions. Then we
give a description of elliptic curves over C as tori and briefly discuss the j-invariant.

2 Lattices and Elliptic Functions

Let L be a lattice in C, that is, a subgroup of C that is a free abelian group of rank 2
and contains a basis for C as an R vector space. It is clear that all such lattices can be
generated by two vectors wy, wz. We write L = w1, wo] and demand Im(3t) > 0.

Definition 2.1. We say a meromorphic function f : C — C is elliptic for a lattice L if
fz+w)= f(2),Yw € L.

If f has no poles, then f is bounded, as it is well defined on C/ L, which is topologically
a torus and therefore compact. Thus, f is bounded and entire, and therefore constant.
So if we’re interested in nonconstant elliptic functions, we must allow poles.

Theorem 2.2. Let P be a fundamental parallelogram for C/L such that f has no poles
on OP. (This can always be arranged) Then Z res(f) =0

residues in P
Proof. By Cauchy’s theorem (one of them):
27riZRes(f) = / f(z)dz
oP

However this integral is taken along the boundary of a parallelogram, and thus the
contributions from opposite sides (which are traversed in opposite directions) cancel. []



Corollary 2.3. Nonconstant elliptic functions have at least two poles in an appropriately
shifted parallelogram P whose boundary avoids the poles.

We present another theorem along the same lines as the first.

Theorem 2.4. Let {a;} be the set of points where f has a pole or zero in P. Suppose
f has order m; at a;. Then Y m; = 0.

Proof. 2miy m; = [4p %dz, and we can conclude as before. O]
We present again another proof along a similar vein.

Theorem 2.5. With the notation as before, Y mja; =0 (mod L)
Proof. We look around for a function to integrate and after some time consider the
following;:
: f'(2)
2mi m;a; = z dz
Z o op f(z)

Now we break up the integral and use symmetry to conclude that it lies in 27:L and
conclude. O

With these theorems in place we prove the existence of nonconstant elliptic functions
and explore their properties.

3 Constructing Elliptic Functions

We think very hard and then write down the following function:

1< 1 1
0=+ 3 (e )
weL
We really should show that this converges uniformly on compact sets not including
lattice points, but don’t. We hope the reader has a strong enough resolve to verify this
for themselves. It isn’t clear that g is elliptic, but there are a few things which are
clear. Clearly o has double poles on L and nowhere else, and is even. Now consider the

derivative: )
¢ = _9 «. -
RERR) pua
weL

Clearly @ is elliptic and odd. The periodicity of p* implies that the function p(z+w;)—

©(z) is constant. We wish to show this constant is 0. Let z = “5* and we obtain:

w1
2
However, by the evenness of o we see that C' = 0. We do the same song and dance for
wy and obtain that @ is elliptic, which isn’t obvious from its definition. It might be a
little presumptuous to assume that we’ve generated all elliptic functions, but it turns
out the rigidity of complex analysis forces this to be true. We refer the reader to Lang’s
elliptic functions for a proof.

p(5) = p(—+) +C



Theorem 3.1. The field of elliptic functions for L is generated by o and ¢'.

Now we search for a relation among g and g°‘ by brute force expansion about 0.
Again, for details, see Lang. We define the function ¢(z) as follows:

¢(2) = ¢'(2)* — 4p(2)° + gap(2) + g3

It turns out that this function has no poles or constant term (by inspecting the expan-
sions) and is visibly elliptic, and therefore must be constant. To summarize the above,
we have the following map.

(0,9 : C/L = E:y* = 42° — gox — g3

It can be shown that the right hand side has nonzero discriminant and therefore defines
an elliptic curve. One natural question to ask is if this map is surjective. It certainly
is, as p(z) — « has a double pole at 0 and therefore must have two roots corresponding
to the two square roots of the cubic. In more advanced terminology, we see that p°
seperates the two points z with p(z) = «. Putting this together we say that (g, ¢')
defines a complex analytic isomorphism between C/L and E(C).

4 Understanding the Group Law

One of the perks of the above construction is that it allows us to understand the some-
what mysterious group law on elliptic curves in terms of the much more well understood
group law on C/L. In particular, we will see that when we transport the group law on
C/L to E(C) it is precisely the one described by the secant line method that is usually
first taught in the theory of elliptic curves.

Consider u,v € C/L. We want to understand @(u + v) in terms of p(u) and @(v).
Let y = az + b be the line containing the points (p(u), ¢'(u)) and (p(v), o' (v)). Then
¢'(z) — (ap(z) + b) has a pole of order 3 at 0, which means it has 3 zeroes. Assuming for
simplicity that they’re distinct. By Theorem 2.5, we have that the third zero, w, must
satisfy © + v 4+ w = 0. Thus we have the following equality:

42° — gax — g3 — (ax +b)* = 4(z — p(u))(z — p(v))(z — p(w))

Comparing the coefficients of 22 gives p(u) + p(v) + p(w) = ‘2—2. We also have a(p(u) —
p()) = p'(u) — p’'(v). These facts together give:

1

o+ v) = —p(u) — plv) + > (

: @' (u) = @’(v)>2

p(u) = p(v)
Careful inspection reveals that this is the same as the secant line method the reader is

probably familiar with being introducted to when learning the basic theory of elliptic
curves.



